Commutative Algebra Fall 2013 Lecture 13

Karen Yeats Scribe: Stefan Trandafir

October 27, 2013

1 A Few Comments On Krull Dimension

Recall that R is a commutative ring. The <u>Krull Dimension</u> of R, if it exists, is the maximal height of any prime ideal of R.

Proposition: If KdimR exists, then it is the largest height of any maximal ideal of R.

<u>Proof:</u> If P is nonmaximal but prime, then any chain ending at P can be extended by a max ideal Q containing P, so height(P) < height(Q).

Proposition: Let R be an affine domain over F. Then $Kdim R = 0 \Leftrightarrow trdeg_F R = 0$.

<u>Proof:</u> KdimR = 0, a domain $\Leftrightarrow 0$ is the only prime ideal $\Leftrightarrow R$ is a field $\Leftrightarrow R$ algebraic over F. (by Theorem A) $\Leftrightarrow trdeg_FR = 0$.

<u>Proposition:</u> Every maximal ideal of $F[\lambda_1,...,\lambda_n]$ has height at least n and can be spanned by n elements as a module.

Proof (by induction on n):

For n = 1: $F[\lambda_1]$ is a PID, so all nonzero prime ideals are maximal and are generated by one element.

For n > 1: Let P be a maximal ideal of $R = F[\lambda_1, ..., \lambda_n]$, P contains a nonzero element of $F[\lambda_n]$, call it f. Let $K = F[\lambda_n]/\langle f \rangle$ in $F[\lambda_n]$. K is a field.

Let $P_n = \langle f \rangle \subseteq P$, where $\langle f \rangle$ is an ideal in R.

Consider P/P', $R/P' \cong K[\lambda_1, ..., \lambda_{n-1}]$ by the second isomorphism theorem. P/P' is a maximal ideal of R/P' so by induction P/P' has height at least n-1 and can be spanned by n-1 elements as a module.

Say $f_1+P', f_2+P', ..., f_{n-1}+P'$ span P/P'. So P is generated by $f_1, ..., f_{n-1}, f$. Suppose $Q_0 \subsetneq Q_1 \subsetneq ... \subsetneq Q_{n-1} = P/P'$ is a chain in spec(R/P').

By the second isomorphism theorem $Q-i=P_i/P'$ and P_i is a prime ideal of R containing P'. So $P'\subseteq P_0\subseteq P_1\subseteq ...\subseteq P_{n-1}=P$. Finally, R is a domain so we can write $0\subsetneq P'\subsetneq P_0\subsetneq P_1\subsetneq ...\subsetneq P_{n-1}=P$ giving that P has height $\geq n$.

2 LO, INC, GU

Running assumption: $C \subsetneq R$ commutative rings. By the third isomorphism theorem, if $Q \in Spec(R)$, then $C/(Q \cap C) \cong (C+Q)/Q$. Note that (C+Q)/Q is a subring of R/Q but R/Q is an integral domain, so (C+Q)/Q is also. So $Q \cap C \in Spec(C)$.

<u>Definition:</u> Call the map defined above

```
\psi: Spec(R) \to Spec(C)Q \mapsto Q \cap C.
```

Say $Q \in Spec(R)$ lies over P in Spec(C) if $P = Q \cap C$. Say $C \subseteq R$ satisfies the lying over condition (LO) if ψ is onto. In cases we care about, ψ is typically onto but not 1-1.

<u>Definition</u>: Say $C \subseteq R$ satisfies the incomparibility condition (INC) if whenever $Q_0 \subsetneq Q_1$ in spec(R) then $Q_0 \cap C \subsetneq Q_1 \cap C$.

The point is that if $Q_0 \neq Q_1 \in spec(R)$, both lying over $P \in Spec(C)$, then for an extension satisfying INC, we can't have $Q_0 \subsetneq Q$ or $Q_1 \subsetneq Q_0$, i.e prime ideals lying over P are incomparable in the subset partial order.

<u>Definition</u>: $C \subseteq R$ satisfies the going up condition (GU) if for all $P_0 \subseteq P_1 \in Spec(C)$ and for all $Q_0 \in Spec(R)$ lying over P_0 .

$$Q_0 \subseteq ?$$

$$\mid \qquad \mid$$

$$P_0 - P_1$$

 $\exists Q_1 \supseteq Q_0, Q_1 \in Spec(R). \ Q_1 \ \text{lying over } R.$

Point:

1. Given $Q_0 \subsetneq Q_1 \subsetneq ... \subsetneq Q_m$ a chain in Spec(R),

 $Q_0 \cap C \subseteq Q_1 \cap C \subseteq ... \subseteq Q_m \cap C$ is a chain in Spec(R), but it might have equalities. If $C \subseteq R$ satisfies INC, then there are no 'eq' in the second chain so the chains have the same length.

2. Given $P_0 \subsetneq P_1 \subsetneq ... \subsetneq P_m$ a chain in Spec(C). If $C \subseteq R$ satisfies LO then $\exists Q_0 \in Spec(R)$ lying over P_0 . If $C \subseteq R$ also satisfies GU, then inductively $\exists Q_1 \in Spec(R)$ for which

$$\begin{array}{c|c} Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq \ldots \subseteq Q_M \\ | & | & | \\ P_0 \subsetneq P_1 \subsetneq P_2 \subsetneq \ldots & \subsetneq P_m \end{array}$$

and the inclusions on the top chain are strict, since they are strict after inter-

secting with C. Thus both chains have the same length.

Proposition: If $C \subseteq R$ satisfies LO, INC, GU, then KdimC = KdimR.

3 LO, INC, GU for integral extensions

<u>Lemma:</u> Suppose Q is an ideal of R. 1. If R is integral over C, then R/Q is integral over $C/(C \cap Q)$. 2. If Q' is an ideal of R containing Q and $P' = Q' \cap C$. Then $P'/(Q \cap C) = Q'/Q \cap C/(C \cap Q)$.

Proof:

- 1. Take $r \in R$. Let f be a monic polynomial with coefficients in C, f(r) = 0. Then the image of f in R/Q has coefficients in $(C+Q)/Q \cong C/(C+Q)$. So the image of r is integral over $C/(C \cap Q)$.
- 2. Recall the modularity property of modules:

For $N_1 \subseteq N_2$, K submodules of a module M, $(N_1 + K) \cap N_2 = N_1 + (K \cap N_2)$. So we want $P'/(Q \cap C) = Q'/Q \cap C/(C \cap Q)$.

Equivalently, $((Q' \cap C) + Q)/Q = Q'/Q \cap (C + Q)/Q$. So it suffices to show $(Q' \cap C) + Q = Q' \cap (C + Q)$ which is true by modularity.

<u>Lemma:</u> Suppose R is an integral domain and R is algebraic over C. Then every nonzero ideal of R intersects C nontrivially.

<u>Proof:</u> Let $A \neq 0$ be an ideal of R and take $a \neq 0, a \in A$. Let $f = \sum_{i=1}^{n} c_i \lambda$ with $c_0 \neq 0$ and f(a) = 0. Then $c_0 = (-\sum_{i=1}^{n} c_0 a^{i-1})a \in A$. So $c_0 \in A \cap C$.

Proposition: Let $C \subseteq R$ be integral. Then INC holds.

<u>Proof:</u> Let $P \in Spec(C)$, $Q_0 \subseteq Q_1 \in Spec(R)$ lying over P. Then $C/P \subseteq R/Q_0$ is also an integral extension, and both are integral domains. Furthermore, Q_1/Q_0 (an ideal of R/Q_0) lies over 0 in C/P, i.e. $Q_1/Q_0 \cap C/P = 0$ contradicting the lemma unless $Q_1/Q_0 = 0$, i.e. $Q_1 = Q_0$.

Lemma:

- 1. Let $S \subseteq R, S$ closed under multiplication, $1 \in S$. Then any ideal Q which is maximal wrt $Q \cap S = \phi$ is a prime ideal.
- 2. Suppose $P \in Spec(C)$ and A is an ideal of R with $A \cap C \subseteq P$. Then there exists an ideal Q containing A and maximal with respect to $Q \cap C \subseteq P$ and Q is necessarily a prime ideal.

Proof:

- 1. Check Q prime by checking that for any $B_1, B_2 \supseteq Q$, B_1, B_2 ideals of R we have $B_1, B_2 \subseteq Q$. Take $B_1, B_2 \supseteq Q$ ideals of R. By hypothesis $B_1 \cap S \neq \phi$. Say $s_i \in B_i \cap S$. Then $s_1, s_2 \in B_1, B_2 \cap S$ so $s_1, s_2 \neq Q$ so $B_1B_2 \subseteq Q$.
- 2. Let $S = C \setminus P$. Let $\mathscr{S} = \{Q \text{ ideal of } R : Q \cap S = \emptyset, A \subseteq Q\}$. \mathscr{S} is nonempty

as $A \in \mathcal{S}$. The union of any chain in \mathcal{S} is in \mathcal{S} .

 \therefore by Zorn's Lemma, $\mathscr S$ contains a maximal element Q which is the Q we were looking for, and by 1, Q is prime.

Lemma: $GU \Rightarrow LO$ (for commutative rings)

<u>Proof:</u> Suppose $P \in Spec(C)$. By the Lemma with $A = 0, \exists Q_0 \in Spec(R)$ with $Q_0 \cap C \subseteq P$. Let $P_0 = Q_0 \cap C$. Then apply going up to get $Q \in Spec(R), Q_0 \subseteq$ Q, Q lying over P.

Proposition: Let $C \subseteq R$ integral. Then LO and GU hold.

Proof: By the previous lemma, we only need to prove GU. Take **INSERT DIAGRAM***

By 2 of the Lemma before, $\exists Q \supseteq Q_0$ in Spec(R) maximal wrt $Q \cap C \subseteq P_1$.

Let $P = Q \cap C$. If $P = P_1$, we're done.

So assume $P \subsetneq P_1$. Take $a \in P_1 - P$.

 $\underline{\text{Claim:}} < Q, a > \cap C \subseteq P_1.$

This will suffice as it contradicts the maximality of Q. Take $r \in R$ st $ar \in C$.

By integrality $r^t = \sum_{i=0}^{t-1} c_i r^i$, $c_i \in C$, some t. So $(ra)^t = a^i \sum_{i=0}^{t-1} c_i r^i = a \sum_{i=0}^{t-1} a^{t-i-1} c_i (ra)^i \in aC \subseteq P_1$.

If R is an integral extension of C, then KdimR = KdimC.